Random {base} | R Documentation |
.Random.seed
is an integer vector of length 3, containing the
“seed” for all random number generation in R. The Wichmann-Hill
generator is used which has a cycle length of 6.9536e12 (=
prod(p-1)/4
where p
is the length 3 vector of primes,
below), see p.123 of Applied Statistics (1984) vol.33 which corrects
the original article.
.Random.seed <- c(n1, n2, n3)
.Random.seed == r[1:3]
, where r[i]
is in 1:p[i]
,
and p = (30269, 30307, 30323)
.
Initially, there is no seed; a new one is created, using “Randomize”. Hence, student exercises will each have different simulation results, by default.
B.A. Wichmann and I. D. Hill (1982). Algorithm AS 183: An Efficient and Portable Pseudo-random Number Generator, Applied Statistics, 31, 188-190; Remarks: 34,p.198 and 35, p.89.
A. De Matteis and S. Pagnutti (1993). Long-range Correlation Analysis of the Wichmann-Hill Random Number Generator, Statist. Comput., 3, 67-70.
runif
, rnorm
, ....
runif(1); .Random.seed; runif(1); .Random.seed
## If there is no seed, a ``random'' new one is created:
rm(.Random.seed); runif(1); .Random.seed
p.WH <- c(30269, 30307, 30323)
a.WH <- c( 171, 172, 170)
R.seed <- function(i.seed = .Random.seed) (a.WH * i.seed) %% p.WH
my.runif1 <- function(i.seed = .Random.seed)
{ ns <- R.seed(i.seed); sum(ns / p.WH) %% 1 }
## This shows how `runif(.)' works, just using R functions :
rs <- .Random.seed
R.seed(rs); u <- runif(1); .Random.seed; c(u, my.runif1(rs))