| eigen {base} | R Documentation |
Spectral Decomposition of a Matrix
Description
This function computes eigenvalues and eigenvectors by providing an
interface to the EISPACK routines RS, RG, CH and CG.
Usage
eigen(x, symmetric, only.values=FALSE)
Arguments
x |
a matrix whose spectral decomposition is to be computed. |
symmetric |
if |
only.values |
if |
Value
The spectral decomposition of x is returned
as components of a list.
values |
a vector containing the |
vectors |
a |
Note
To compute the determinant of a matrix (do you really need it?),
it is much more efficient to use the QR decomposition, see qr.
References
Smith, B. T, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. Klema, C. B. Moler (1976). Matrix Eigensystems Routines - EISPACK Guide. Springer-Verlag Lecture Notes in Computer Science.
See Also
svd, a generalization of eigen; qr, and
chol for related decompositions.
Examples
eigen(cbind(c(1,-1),c(-1,1)))
eigen(cbind(c(1,-1),c(-1,1)), symmetric = FALSE)# same (different algorithm).
eigen(cbind(1,c(1,-1)), only.values = TRUE)
eigen(cbind(-1,2:1)) # complex values
eigen(print(cbind(c(0,1i), c(-1i,0))))# Hermite ==> real Eigen values
## 3 x 3:
eigen(cbind( 1,3:1,1:3))
eigen(cbind(-1,c(1:2,0),0:2)) # complex values
Meps <- .Alias(.Machine$double.eps)
m <- matrix(round(rnorm(25),3), 5,5)
sm <- m + t(m) #- symmetric matrix
em <- eigen(sm); V <- em$vect
print(lam <- em$values) # ordered DEcreasingly
all(abs(sm %*% V - V %*% diag(lam)) < 60*Meps)
all(abs(sm - V %*% diag(lam) %*% t(V)) < 60*Meps)
##------- Symmetric = FALSE: -- different to above : ---
em <- eigen(sm, symmetric = FALSE); V2 <- em$vect
print(lam2 <- em$values) # ordered decreasingly in ABSolute value !
# and V2 is not normalized (where V is):
print(i <- rev(order(lam2)))
all(abs(1 - lam2[i] / lam) < 60 * Meps)# [1] TRUE
zapsmall(Diag <- t(V2) %*% V2) # orthogonal, but not normalized
print(norm2V <- apply(V2 * V2, 2, sum))
all( abs(1- norm2V / diag(Diag)) < 60*Meps) #> TRUE
V2n <- sweep(V2,2, STATS= sqrt(norm2V), FUN="/")## V2n are now Normalized EV
apply(V2n * V2n, 2, sum)
##[1] 1 1 1 1 1
## Both are now TRUE:
all(abs(sm %*% V2n - V2n %*% diag(lam2)) < 60*Meps)
all(abs(sm - V2n %*% diag(lam2) %*% t(V2n)) < 60*Meps)
## Re-ordered as with symmetric:
sV <- V2n[,i]
slam <- lam2[i]
all(abs(sm %*% sV - sV %*% diag(slam)) < 60*Meps)
all(abs(sm - sV %*% diag(slam) %*% t(sV)) < 60*Meps)
## sV *is* now equal to V -- up to sign (+-) and rounding errors
all(abs(c(1 - abs(sV / V))) < 1000*Meps) # TRUE (P ~ 0.95)