lm.summaries {base} | R Documentation |
Accessing Linear Model Fits
Description
All these functions are methods
for class lm
or
summary.lm
and anova.lm
objects.
Usage
anova(object, ...)
anovalist(object, ..., test = NULL)
summary(object, correlation = FALSE)
coefficients(x) ; coef(x)
df.residual(x)
family(x)
formula(x)
fitted.values(x)
residuals(x)
weights(x)
plot(x)
print(summary.lm.obj, digits = max(3, .Options$digits - 3),
symbolic.cor = p > 4,
signif.stars= .Options$show.signif.stars, ...)
Arguments
object , x |
an object of class |
Details
print.summary.lm
tries to be smart about formatting the
coefficients, standard errors, etc. and additionally gives
“significance stars” if signif.stars
is TRUE
.
anova.lm
produces an analysis of variance (anova
) table.
The generic accessor functions coefficients
, effects
,
fitted.values
and residuals
can be used to extract
various useful features of the value returned by lm
.
Value
The function summary.lm
computes and returns a list of summary
statistics of the fitted linear model given in lm.obj
, using
the slots (list elements) "call"
, "terms"
, and
"residuals"
from its argument, plus
coefficients |
a |
sigma |
the square root of the estimated variance of the random error
where |
df |
degrees of freedom, a 3-vector |
fstatistic |
a 3-vector with the value of the F-statistic with its numerator and denominator degrees of freedom. |
r.squared |
where |
adj.r.squared |
the above |
cov.unscaled |
a |
and if correlation = TRUE
was specified,
correlation |
the correlation matrix corresponding to the above
|
See Also
The model fitting function lm
.
anova
for the ANOVA table,
coefficients
, deviance
,
effects
, fitted.values
,
glm
for generalized linear models,
lm.influence
for regression diagnostics,
residuals
, summary
.
Examples
##-- Continuing the lm(.) example:
coef(lm.D90)# the bare coefficients
sld90 <- summary(lm.D90 <- lm(weight ~ group -1))# omitting intercept
sld90
coef(sld90)# much more
## The 2 basic regression diagnostic plots:
plot(resid(lm.D90), fitted(lm.D90))# Tukey-Anscombe's
abline(h=0, lty=2, col = 'gray')
qqnorm(residuals(lm.D90))