Bessel {base} | R Documentation |
Bessel Functions
Description
Bessel Functions of integer and fractional order, of first
and second kind, J_{\nu}
and Y_{\nu}
, and
Modified Bessel functions (of first and third kind),
I_{\nu}
and K_{\nu}
.
gammaCody
is the (\Gamma)
function as from the Specfun
package and originally used in the Bessel code.
Usage
besselI(x, nu, expon.scaled = FALSE)
besselK(x, nu, expon.scaled = FALSE)
besselJ(x, nu)
besselY(x, nu)
gammaCody(x)
Arguments
x |
numeric, |
nu |
numeric; |
expon.scaled |
logical; if |
Details
The underlying C code stems from Netlib (http://www.netlib.org/specfun/r[ijky]besl).
If expon.scaled = TRUE
, e^{-x} I_{\nu}(x)
,
or e^{x} K_{\nu}(x)
are returned.
gammaCody
may be somewhat faster but less precise and/or robust
than R's standard gamma
. It is here for experimental
purpose mainly, and may be defunct very soon.
Value
Numeric vector of the same length of x
with the (scaled, if
expon.scale=TRUE
) values of the corresponding Bessel function.
Author(s)
Original Fortran code:
W. J. Cody, Argonne National Laboratory
Translation to C and adaption to R:
Martin Maechler maechler@stat.math.ethz.ch.
nus <- c(0:5,10,20)
x <- seq(0,4, len= 501) plot(x,x, ylim = c(0,6), ylab="",type='n', main = "Bessel Functions I_nu(x)") for(nu in nus) lines(x,besselI(x,nu=nu), col = nu+2) legend(0,6, leg=paste("nu=",nus), col = nus+2, lwd=1)
x <- seq(0,40,len=801); yl <- c(-.8,.8) plot(x,x, ylim = yl, ylab="",type='n', main = "Bessel Functions J_nu(x)") for(nu in nus) lines(x,besselJ(x,nu=nu), col = nu+2) legend(32,-.18, leg=paste("nu=",nus), col = nus+2, lwd=1)
x0 <- 2^(-20:10) plot(x0,x0^-8, log='xy', ylab="",type='n', main = "Bessel Functions J_nu(x) near 0\n log - log scale") for(nu in sort(c(nus,nus+.5))) lines(x0,besselJ(x0,nu=nu), col = nu+2) legend(3,1e50, leg=paste("nu=", paste(nus,nus+.5, sep=",")), col=nus+2, lwd=1)
plot(x0,x0^-8, log='xy', ylab="",type='n', main = "Bessel Functions K_nu(x) near 0\n log - log scale") for(nu in sort(c(nus,nus+.5))) lines(x0,besselK(x0,nu=nu), col = nu+2) legend(3,1e50, leg=paste("nu=", paste(nus,nus+.5, sep=",")), col=nus+2, lwd=1)
x <- x[x > 0] plot(x,x, ylim=c(1e-18,1e11),log="y", ylab="",type='n', main = "Bessel Functions K_nu(x)") for(nu in nus) lines(x,besselK(x,nu=nu), col = nu+2) legend(0,1e-5, leg=paste("nu=",nus), col = nus+2, lwd=1)
## Check the Scaling : for(nu in nus) print(all(abs(1- besselK(x,nu)*exp( x) / besselK(x,nu,expo=TRUE)) < 2e-15)) for(nu in nus) print(all(abs(1- besselI(x,nu)*exp(-x) / besselI(x,nu,expo=TRUE)) < 1e-15))
yl <- c(-1.6, .6) plot(x,x, ylim = yl, ylab="",type='n', main = "Bessel Functions Y_nu(x)") for(nu in nus)xx <- x[x > .6*nu]; lines(xx,besselY(xx,nu=nu), col = nu+2) legend(25,-.5, leg=paste("nu=",nus), col = nus+2, lwd=1)
math
References
Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. Dover, New York; Chapter 9: Bessel Functions of Integer Order.
See Also
Other special mathematical functions, as the
gamma
, \Gamma(x)
, and beta
,
B(x)
.