| Beta {base} | R Documentation |
The Beta Distribution
Description
Density, distribution function, quantile function and random
generation for the Beta distribution with parameters shape1 and
shape2 (and optional non-centrality parameter ncp).
Usage
dbeta(x, shape1, shape2, ncp=0, log = FALSE)
pbeta(q, shape1, shape2, ncp=0, lower.tail = TRUE, log.p = FALSE)
qbeta(p, shape1, shape2, lower.tail = TRUE, log.p = FALSE)
rbeta(n, shape1, shape2)
Arguments
x, q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. If |
shape1, shape2 |
positive parameters of the Beta distribution. |
ncp |
non-centrality parameter. |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
Details
The Beta distribution with parameters shape1 = a and
shape2 = b has density
f(x)=\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}{x}^{a} {(1-x)}^{b}%
for a > 0, b > 0 and 0 < x < 1.
Value
dbeta gives the density, pbeta the distribution
function, qbeta the quantile function, and rbeta
generates random deviates.
See Also
beta for the Beta function, and dgamma for
the Gamma distribution.
Examples
x <- seq(0, 1, length=21)
dbeta(x, 1, 1)
pbeta(x, 1, 1)