Beta {base} | R Documentation |
Density, distribution function, quantile function and random
generation for the Beta distribution with parameters shape1
and
shape2
(and optional non-centrality parameter ncp
).
dbeta(x, shape1, shape2, ncp=0, log = FALSE)
pbeta(q, shape1, shape2, ncp=0, lower.tail = TRUE, log.p = FALSE)
qbeta(p, shape1, shape2, lower.tail = TRUE, log.p = FALSE)
rbeta(n, shape1, shape2)
x , q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. If |
shape1 , shape2 |
positive parameters of the Beta distribution. |
ncp |
non-centrality parameter. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
The Beta distribution with parameters shape1
= a
and
shape2
= b
has density
f(x)=\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}{x}^{a} {(1-x)}^{b}%
for a > 0
, b > 0
and 0 < x < 1
.
dbeta
gives the density, pbeta
the distribution
function, qbeta
the quantile function, and rbeta
generates random deviates.
beta
for the Beta function, and dgamma
for
the Gamma distribution.
x <- seq(0, 1, length=21)
dbeta(x, 1, 1)
pbeta(x, 1, 1)