Hershey {base} | R Documentation |
If the vfont
argument to one of the text-drawing functions
(text
, mtext
, title
,
axis
, and contour
) is a character vector
of length 2, hershey vector fonts are used to render the text.
These fonts have two advantages:
vector fonts describe each character in terms of a set of points; R renders the character by joining up the points with straight lines. This intimate knowledge of the outline of each character means that R can arbitrarily transform the characters, which can mean that the vector fonts look better for rotated and 3d text.
this implementation was adapted from the GNU libplot library which provides support for non-ASCII and non-English fonts. This means that it is possible, for example, to produce weird plotting symbols and Japanese characters.
Drawback:
You cannot use mathematical expressions (plotmath
) with
Hershey fonts.
Hershey
The Hershey characters are organised into a set of fonts, which are
specified by a typeface (e.g., serif
or sans serif
)
and a fontindex or “style” (e.g., plain
or italic
).
The first element of vfont
specifies the typeface and the second
element specifies the fontindex. The first table
produced by example(Hershey)
shows the character a
produced
by each of the different fonts.
The available typeface
and fontindex
values are
available as list components of the variable Hershey
.
The allowed pairs for (typeface, fontindex)
are:
serif | plain |
serif | italic |
serif | bold |
serif | bold italic |
serif | cyrillic |
serif | oblique cyrillic |
serif | EUC |
sans serif | plain |
sans serif | italic |
sans serif | bold |
sans serif | bold italic |
script | plain |
script | italic |
script | bold |
gothic english | plain |
gothic german | plain |
gothic italian | plain |
serif symbol | plain |
serif symbol | italic |
serif symbol | bold |
serif symbol | bold italic |
sans serif symbol | plain |
sans serif symbol | italic |
and the indices of these are available as Hershey$allowed
.
The string to be drawn can include escape
sequences, which all begin with a \
. When R encounters a
\
,
rather than drawing the \
, it treats the subsequent character(s)
as a coded description of what to draw.
One useful escape sequence (in the current context)
is of the form: \123
. The three
digits following the \
specify an octal code for a character. For
example, the octal code for p
is 160 so the strings "p"
and "\160"
are equivalent.
This is useful for producing characters when
there is not an appropriate key on your keyboard.
The other useful escape sequences all begin with \\
. These are
described below.
an entire string of Greek symbols can be produced by
selecting the Serif Symbol or Sans Serif Symbol typeface. To allow
Greek symbols to be embedded in a string which uses a non-symbol typeface,
there are a set of symbol escape sequences of the form \\ab
.
For example, the escape sequence \\*a
produces a Greek alpha.
The second table in example(Hershey)
shows all of the symbol
escape sequences and the symbols that they produce.
further escape sequences of the form \\ab
are
provided for producing ISO Latin-1 characters (for example, if
you only have a US keyboard). Another option is to use the appropriate
octal code. The (non-ASCII) ISO Latin-1 characters are in the range
241...377. For example, \366
produces the character o
with an
umlaut. The third table in example(Hershey)
shows all of the
ISO Latin-1 escape sequences.
a set of characters are provided which
do not fall into any standard font. These can only be accessed by
escape sequence. For example, \\LI
produces the zodiac sign for
Libra, and \\JU
produces the astronomical sign for Jupiter.
The fourth table in example(Hershey)
shows all of the
special character escape sequences.
cyrillic characters are implemented
according to the K018-R encoding. On a US keyboard, these can be
produced using the Serif typeface and Cyrillic (or Oblique Cyrillic)
fontindex and specifying an octal code in the range 300 to 337 for
lower case characters or 340 to 377 for upper case characters.
The fifth table in example(Hershey)
shows the octal codes for
the available cyrillic characters.
83 Hiragana, 86 Katakana, and 603 Kanji characters are implemented according to the EUC (Extended Unix Code) encoding. Each character is idenitified by a unique hexadecimal code. The Hiragana characters are in the range 0x2421 to 0x2473, Katakana are in the range 0x2521 to 0x2576, and Kanji are (scattered about) in the range 0x3021 to 0x6d55.
When using the Serif typeface and EUC
fontindex, these characters can be produced by a pair of octal
codes. Given the hexadecimal code (e.g., 0x2421), take the first two
digits and add 0x80 and do the same to the second two digits (e.g.,
0x21 and 0x24 become 0xa4 and 0xa1), then convert both to octal (e.g.,
0xa4 and 0xa1 become 244 and 241). For example, the first Hiragana
character is produced by \244\241
.
It is also possible to use the hexadecimal code directly. This works
for all non-EUC fonts by specifying an escape sequence of the form
\\#J1234
. For example, the first Hiragana character is produced
by \\#J2421
.
The Kanji characters may be specified in a third way, using the
so-called "Nelson Index", by specifying an escape sequence of the form
\\#N1234
. For example, the Kanji for “one” is
produced by \\#N0001
.
all of the characters in the Hershey fonts
are stored in a large array. Some characters are not accessible in
any of the Hershey fonts. These characters can only be accessed via
an escape sequence of the form \\#H1234
. For example, the
fleur-de-lys is produced by \\#H0746
. The sixth and seventh
tables of
example(Hershey)
shows all of the available raw glyphs.
http://www.gnu.org/software/plotutils/plotutils.html
text
,
contour
,
Japanese
str(Hershey)
######
# create tables of vector font functionality
######
make.table <- function(nr, nc) {
savepar <- par(mar=rep(0, 4), pty="s")
plot(c(0, nc*2 + 1), c(0, -(nr + 1)),
type="n", xlab="", ylab="", axes=FALSE)
savepar
}
get.r <- function(i, nr) i %% nr + 1
get.c <- function(i, nr) i %/% nr + 1
draw.title <- function(title, i = 0, nr, nc) {
r <- get.r(i, nr)
c <- get.c(i, nr)
text((nc*2 + 1)/2, 0, title, font=2)
}
draw.sample.cell <- function(typeface, fontindex, string, i, nr) {
r <- get.r(i, nr)
c <- get.c(i, nr)
text(2*(c - 1) + 1, -r, paste(typeface, fontindex))
text(2*c, -r, string, vfont=c(typeface, fontindex), cex=1.5)
rect(2*(c - 1) + .5, -(r - .5), 2*c + .5, -(r + .5), border="grey")
}
draw.vf.cell <- function(typeface, fontindex, string, i, nr, raw.string=NULL) {
r <- get.r(i, nr)
c <- get.c(i, nr)
if (is.null(raw.string))
raw.string <- paste("\\", string, sep="")
text(2*(c - 1) + 1, -r, raw.string, col="grey")
text(2*c, -r, string, vfont=c(typeface, fontindex))
rect(2*(c - 1) + .5, -(r - .5), (2*c + .5), -(r + .5), border="grey")
}
nr <- 23
nc <- 1
oldpar <- make.table(nr, nc)
i <- 0
draw.title("Sample 'a' for each available font", i, nr, nc)
draw.sample.cell("serif", "plain", "a", i, nr); i <- i + 1
draw.sample.cell("serif", "italic", "a", i, nr); i <- i + 1
draw.sample.cell("serif", "bold", "a", i, nr); i <- i + 1
draw.sample.cell("serif", "bold italic", "a", i, nr); i <- i + 1
draw.sample.cell("serif", "cyrillic", "a", i, nr); i <- i + 1
draw.sample.cell("serif", "oblique cyrillic", "a", i, nr); i <- i + 1
draw.sample.cell("serif", "EUC", "a", i, nr); i <- i + 1
draw.sample.cell("sans serif", "plain", "a", i, nr); i <- i + 1
draw.sample.cell("sans serif", "italic", "a", i, nr); i <- i + 1
draw.sample.cell("sans serif", "bold", "a", i, nr); i <- i + 1
draw.sample.cell("sans serif", "bold italic", "a", i, nr); i <- i + 1
draw.sample.cell("script", "plain", "a", i, nr); i <- i + 1
draw.sample.cell("script", "italic", "a", i, nr); i <- i + 1
draw.sample.cell("script", "bold", "a", i, nr); i <- i + 1
draw.sample.cell("gothic english", "plain", "a", i, nr); i <- i + 1
draw.sample.cell("gothic german", "plain", "a", i, nr); i <- i + 1
draw.sample.cell("gothic italian", "plain", "a", i, nr); i <- i + 1
draw.sample.cell("serif symbol", "plain", "a", i, nr); i <- i + 1
draw.sample.cell("serif symbol", "italic", "a", i, nr); i <- i + 1
draw.sample.cell("serif symbol", "bold", "a", i, nr); i <- i + 1
draw.sample.cell("serif symbol", "bold italic", "a", i, nr); i <- i + 1
draw.sample.cell("sans serif symbol", "plain", "a", i, nr); i <- i + 1
draw.sample.cell("sans serif symbol", "italic", "a", i, nr); i <- i + 1
nr <- 25
nc <- 6
tf <- "serif"
fi <- "plain"
make.table(nr, nc)
i <- 0
draw.title("Symbol (incl. Greek) Escape Sequences", i, nr, nc)
## Greek alphabet in order
draw.vf.cell(tf, fi, "\\*A", i, nr); i<-i+1; { "Alpha"}
draw.vf.cell(tf, fi, "\\*B", i, nr); i<-i+1; { "Beta"}
draw.vf.cell(tf, fi, "\\*G", i, nr); i<-i+1; { "Gamma"}
draw.vf.cell(tf, fi, "\\*D", i, nr); i<-i+1; { "Delta"}
draw.vf.cell(tf, fi, "\\*E", i, nr); i<-i+1; { "Epsilon"}
draw.vf.cell(tf, fi, "\\*Z", i, nr); i<-i+1; { "Zeta"}
draw.vf.cell(tf, fi, "\\*Y", i, nr); i<-i+1; { "Eta"}
draw.vf.cell(tf, fi, "\\*H", i, nr); i<-i+1; { "Theta"}
draw.vf.cell(tf, fi, "\\*I", i, nr); i<-i+1; { "Iota"}
draw.vf.cell(tf, fi, "\\*K", i, nr); i<-i+1; { "Kappa"}
draw.vf.cell(tf, fi, "\\*L", i, nr); i<-i+1; { "Lambda"}
draw.vf.cell(tf, fi, "\\*M", i, nr); i<-i+1; { "Mu"}
draw.vf.cell(tf, fi, "\\*N", i, nr); i<-i+1; { "Nu"}
draw.vf.cell(tf, fi, "\\*C", i, nr); i<-i+1; { "Xi"}
draw.vf.cell(tf, fi, "\\*O", i, nr); i<-i+1; { "Omicron"}
draw.vf.cell(tf, fi, "\\*P", i, nr); i<-i+1; { "Pi"}
draw.vf.cell(tf, fi, "\\*R", i, nr); i<-i+1; { "Rho"}
draw.vf.cell(tf, fi, "\\*S", i, nr); i<-i+1; { "Sigma"}
draw.vf.cell(tf, fi, "\\*T", i, nr); i<-i+1; { "Tau"}
draw.vf.cell(tf, fi, "\\*U", i, nr); i<-i+1; { "Upsilon"}
draw.vf.cell(tf, fi, "\\+U", i, nr); i<-i+1; { "Upsilon1"}
draw.vf.cell(tf, fi, "\\*F", i, nr); i<-i+1; { "Phi"}
draw.vf.cell(tf, fi, "\\*X", i, nr); i<-i+1; { "Chi"}
draw.vf.cell(tf, fi, "\\*Q", i, nr); i<-i+1; { "Psi"}
draw.vf.cell(tf, fi, "\\*W", i, nr); i<-i+1; { "Omega"}
#
draw.vf.cell(tf, fi, "\\*a", i, nr); i<-i+1; { "alpha"}
draw.vf.cell(tf, fi, "\\*b", i, nr); i<-i+1; { "beta"}
draw.vf.cell(tf, fi, "\\*g", i, nr); i<-i+1; { "gamma"}
draw.vf.cell(tf, fi, "\\*d", i, nr); i<-i+1; { "delta"}
draw.vf.cell(tf, fi, "\\*e", i, nr); i<-i+1; { "epsilon"}
draw.vf.cell(tf, fi, "\\*z", i, nr); i<-i+1; { "zeta"}
draw.vf.cell(tf, fi, "\\*y", i, nr); i<-i+1; { "eta"}
draw.vf.cell(tf, fi, "\\*h", i, nr); i<-i+1; { "theta"}
draw.vf.cell(tf, fi, "\\+h", i, nr); i<-i+1; { "theta1"}
draw.vf.cell(tf, fi, "\\*i", i, nr); i<-i+1; { "iota"}
draw.vf.cell(tf, fi, "\\*k", i, nr); i<-i+1; { "kappa"}
draw.vf.cell(tf, fi, "\\*l", i, nr); i<-i+1; { "lambda"}
draw.vf.cell(tf, fi, "\\*m", i, nr); i<-i+1; { "mu"}
draw.vf.cell(tf, fi, "\\*n", i, nr); i<-i+1; { "nu"}
draw.vf.cell(tf, fi, "\\*c", i, nr); i<-i+1; { "xi"}
draw.vf.cell(tf, fi, "\\*o", i, nr); i<-i+1; { "omicron"}
draw.vf.cell(tf, fi, "\\*p", i, nr); i<-i+1; { "pi"}
draw.vf.cell(tf, fi, "\\*r", i, nr); i<-i+1; { "rho"}
draw.vf.cell(tf, fi, "\\*s", i, nr); i<-i+1; { "sigma"}
draw.vf.cell(tf, fi, "\\ts", i, nr); i<-i+1; { "sigma1"}
draw.vf.cell(tf, fi, "\\*t", i, nr); i<-i+1; { "tau"}
draw.vf.cell(tf, fi, "\\*u", i, nr); i<-i+1; { "upsilon"}
draw.vf.cell(tf, fi, "\\*f", i, nr); i<-i+1; { "phi"}
draw.vf.cell(tf, fi, "\\+f", i, nr); i<-i+1; { "phi1"}
draw.vf.cell(tf, fi, "\\*x", i, nr); i<-i+1; { "chi"}
draw.vf.cell(tf, fi, "\\*q", i, nr); i<-i+1; { "psi"}
draw.vf.cell(tf, fi, "\\*w", i, nr); i<-i+1; { "omega"}
draw.vf.cell(tf, fi, "\\+p", i, nr); i<-i+1; { "omega1"}
#
draw.vf.cell(tf, fi, "\\fa", i, nr); i<-i+1; { "universal"}
draw.vf.cell(tf, fi, "\\te", i, nr); i<-i+1; { "existential"}
draw.vf.cell(tf, fi, "\\st", i, nr); i<-i+1; { "suchthat"}
draw.vf.cell(tf, fi, "\\**", i, nr); i<-i+1; { "asteriskmath"}
draw.vf.cell(tf, fi, "\\=~", i, nr); i<-i+1; { "congruent"}
draw.vf.cell(tf, fi, "\\tf", i, nr); i<-i+1; { "therefore"}
draw.vf.cell(tf, fi, "\\pp", i, nr); i<-i+1; { "perpendicular"}
draw.vf.cell(tf, fi, "\\ul", i, nr); i<-i+1; { "underline"}
draw.vf.cell(tf, fi, "\\rx", i, nr); i<-i+1; { "radicalex"}
draw.vf.cell(tf, fi, "\\ap", i, nr); i<-i+1; { "similar"}
draw.vf.cell(tf, fi, "\\fm", i, nr); i<-i+1; { "minute"}
draw.vf.cell(tf, fi, "\\<=", i, nr); i<-i+1; { "lessequal"}
draw.vf.cell(tf, fi, "\\f/", i, nr); i<-i+1; { "fraction"}
draw.vf.cell(tf, fi, "\\if", i, nr); i<-i+1; { "infinity"}
draw.vf.cell(tf, fi, "\\Fn", i, nr); i<-i+1; { "florin"}
draw.vf.cell(tf, fi, "\\CL", i, nr); i<-i+1; { "club"}
draw.vf.cell(tf, fi, "\\DI", i, nr); i<-i+1; { "diamond"}
draw.vf.cell(tf, fi, "\\HE", i, nr); i<-i+1; { "heart"}
draw.vf.cell(tf, fi, "\\SP", i, nr); i<-i+1; { "spade"}
draw.vf.cell(tf, fi, "\\<>", i, nr); i<-i+1; { "arrowboth"}
draw.vf.cell(tf, fi, "\\<-", i, nr); i<-i+1; { "arrowleft"}
draw.vf.cell(tf, fi, "\\ua", i, nr); i<-i+1; { "arrowup"}
draw.vf.cell(tf, fi, "\\->", i, nr); i<-i+1; { "arrowright"}
draw.vf.cell(tf, fi, "\\da", i, nr); i<-i+1; { "arrowdown"}
draw.vf.cell(tf, fi, "\\de", i, nr); i<-i+1; { "degree"}
draw.vf.cell(tf, fi, "\\+-", i, nr); i<-i+1; { "plusminus"}
draw.vf.cell(tf, fi, "\\sd", i, nr); i<-i+1; { "second"}
draw.vf.cell(tf, fi, "\\>=", i, nr); i<-i+1; { "greaterequal"}
draw.vf.cell(tf, fi, "\\mu", i, nr); i<-i+1; { "multiply"}
draw.vf.cell(tf, fi, "\\pt", i, nr); i<-i+1; { "proportional"}
draw.vf.cell(tf, fi, "\\pd", i, nr); i<-i+1; { "partialdiff"}
draw.vf.cell(tf, fi, "\\bu", i, nr); i<-i+1; { "bullet"}
draw.vf.cell(tf, fi, "\\di", i, nr); i<-i+1; { "divide"}
draw.vf.cell(tf, fi, "\\!=", i, nr); i<-i+1; { "notequal"}
draw.vf.cell(tf, fi, "\\==", i, nr); i<-i+1; { "equivalence"}
draw.vf.cell(tf, fi, "\\~~", i, nr); i<-i+1; { "approxequal"}
draw.vf.cell(tf, fi, "\\..", i, nr); i<-i+1; { "ellipsis"}
draw.vf.cell(tf, fi, "\\an", i, nr); i<-i+1; { "arrowhorizex"}
draw.vf.cell(tf, fi, "\\CR", i, nr); i<-i+1; { "carriagereturn"}
draw.vf.cell(tf, fi, "\\Ah", i, nr); i<-i+1; { "aleph"}
draw.vf.cell(tf, fi, "\\Im", i, nr); i<-i+1; { "Ifraktur"}
draw.vf.cell(tf, fi, "\\Re", i, nr); i<-i+1; { "Rfraktur"}
draw.vf.cell(tf, fi, "\\wp", i, nr); i<-i+1; { "weierstrass"}
draw.vf.cell(tf, fi, "\\c*", i, nr); i<-i+1; { "circlemultiply"}
draw.vf.cell(tf, fi, "\\c+", i, nr); i<-i+1; { "circleplus"}
draw.vf.cell(tf, fi, "\\es", i, nr); i<-i+1; { "emptyset"}
draw.vf.cell(tf, fi, "\\ca", i, nr); i<-i+1; { "cap"}
draw.vf.cell(tf, fi, "\\cu", i, nr); i<-i+1; { "cup"}
draw.vf.cell(tf, fi, "\\SS", i, nr); i<-i+1; { "superset"}
draw.vf.cell(tf, fi, "\\ip", i, nr); i<-i+1; { "reflexsuperset"}
draw.vf.cell(tf, fi, "\\n<", i, nr); i<-i+1; { "notsubset"}
draw.vf.cell(tf, fi, "\\SB", i, nr); i<-i+1; { "subset"}
draw.vf.cell(tf, fi, "\\ib", i, nr); i<-i+1; { "reflexsubset"}
draw.vf.cell(tf, fi, "\\mo", i, nr); i<-i+1; { "element"}
draw.vf.cell(tf, fi, "\\nm", i, nr); i<-i+1; { "notelement"}
draw.vf.cell(tf, fi, "\\/_", i, nr); i<-i+1; { "angle"}
draw.vf.cell(tf, fi, "\\gr", i, nr); i<-i+1; { "nabla"}
draw.vf.cell(tf, fi, "\\rg", i, nr); i<-i+1; { "registerserif"}
draw.vf.cell(tf, fi, "\\co", i, nr); i<-i+1; { "copyrightserif"}
draw.vf.cell(tf, fi, "\\tm", i, nr); i<-i+1; { "trademarkserif"}
draw.vf.cell(tf, fi, "\\PR", i, nr); i<-i+1; { "product"}
draw.vf.cell(tf, fi, "\\sr", i, nr); i<-i+1; { "radical"}
draw.vf.cell(tf, fi, "\\md", i, nr); i<-i+1; { "dotmath"}
draw.vf.cell(tf, fi, "\\no", i, nr); i<-i+1; { "logicalnot"}
draw.vf.cell(tf, fi, "\\AN", i, nr); i<-i+1; { "logicaland"}
draw.vf.cell(tf, fi, "\\OR", i, nr); i<-i+1; { "logicalor"}
draw.vf.cell(tf, fi, "\\hA", i, nr); i<-i+1; { "arrowdblboth"}
draw.vf.cell(tf, fi, "\\lA", i, nr); i<-i+1; { "arrowdblleft"}
draw.vf.cell(tf, fi, "\\uA", i, nr); i<-i+1; { "arrowdblup"}
draw.vf.cell(tf, fi, "\\rA", i, nr); i<-i+1; { "arrowdblright"}
draw.vf.cell(tf, fi, "\\dA", i, nr); i<-i+1; { "arrowdbldown"}
draw.vf.cell(tf, fi, "\\lz", i, nr); i<-i+1; { "lozenge"}
draw.vf.cell(tf, fi, "\\la", i, nr); i<-i+1; { "angleleft"}
draw.vf.cell(tf, fi, "\\RG", i, nr); i<-i+1; { "registersans"}
draw.vf.cell(tf, fi, "\\CO", i, nr); i<-i+1; { "copyrightsans"}
draw.vf.cell(tf, fi, "\\TM", i, nr); i<-i+1; { "trademarksans"}
draw.vf.cell(tf, fi, "\\SU", i, nr); i<-i+1; { "summation"}
draw.vf.cell(tf, fi, "\\lc", i, nr); i<-i+1; { "bracketlefttp"}
draw.vf.cell(tf, fi, "\\lf", i, nr); i<-i+1; { "bracketleftbt"}
draw.vf.cell(tf, fi, "\\ra", i, nr); i<-i+1; { "angleright"}
draw.vf.cell(tf, fi, "\\is", i, nr); i<-i+1; { "integral"}
draw.vf.cell(tf, fi, "\\rc", i, nr); i<-i+1; { "bracketrighttp"}
draw.vf.cell(tf, fi, "\\rf", i, nr); i<-i+1; { "bracketrightbt"}
draw.vf.cell(tf, fi, "\\~=", i, nr); i<-i+1; { "congruent"}
draw.vf.cell(tf, fi, "\\pr", i, nr); i<-i+1; { "minute"}
draw.vf.cell(tf, fi, "\\in", i, nr); i<-i+1; { "infinity"}
draw.vf.cell(tf, fi, "\\n=", i, nr); i<-i+1; { "notequal"}
draw.vf.cell(tf, fi, "\\dl", i, nr); i<-i+1; { "nabla"}
nr <- 25
nc <- 4
make.table(nr, nc)
i <- 0
draw.title("ISO Latin-1 Escape Sequences", i, nr, nc)
draw.vf.cell(tf, fi, "\\r!", i, nr); i<-i+1; { "exclamdown"}
draw.vf.cell(tf, fi, "\\ct", i, nr); i<-i+1; { "cent"}
draw.vf.cell(tf, fi, "\\Po", i, nr); i<-i+1; { "sterling"}
draw.vf.cell(tf, fi, "\\Ye", i, nr); i<-i+1; { "yen"}
draw.vf.cell(tf, fi, "\\bb", i, nr); i<-i+1; { "brokenbar"}
draw.vf.cell(tf, fi, "\\sc", i, nr); i<-i+1; { "section"}
draw.vf.cell(tf, fi, "\\ad", i, nr); i<-i+1; { "dieresis"}
draw.vf.cell(tf, fi, "\\co", i, nr); i<-i+1; { "copyright"}
draw.vf.cell(tf, fi, "\\Of", i, nr); i<-i+1; { "ordfeminine"}
draw.vf.cell(tf, fi, "\\no", i, nr); i<-i+1; { "logicalnot"}
draw.vf.cell(tf, fi, "\\hy", i, nr); i<-i+1; { "hyphen"}
draw.vf.cell(tf, fi, "\\rg", i, nr); i<-i+1; { "registered"}
draw.vf.cell(tf, fi, "\\a-", i, nr); i<-i+1; { "macron"}
draw.vf.cell(tf, fi, "\\de", i, nr); i<-i+1; { "degree"}
draw.vf.cell(tf, fi, "\\+-", i, nr); i<-i+1; { "plusminus"}
draw.vf.cell(tf, fi, "\\S2", i, nr); i<-i+1; { "twosuperior"}
draw.vf.cell(tf, fi, "\\S3", i, nr); i<-i+1; { "threesuperior"}
draw.vf.cell(tf, fi, "\\aa", i, nr); i<-i+1; { "acute"}
draw.vf.cell(tf, fi, "\\*m", i, nr); i<-i+1; { "mu"}
draw.vf.cell(tf, fi, "\\md", i, nr); i<-i+1; { "periodcentered"}
draw.vf.cell(tf, fi, "\\S1", i, nr); i<-i+1; { "onesuperior"}
draw.vf.cell(tf, fi, "\\Om", i, nr); i<-i+1; { "ordmasculine"}
draw.vf.cell(tf, fi, "\\14", i, nr); i<-i+1; { "onequarter"}
draw.vf.cell(tf, fi, "\\12", i, nr); i<-i+1; { "onehalf"}
draw.vf.cell(tf, fi, "\\34", i, nr); i<-i+1; { "threequarters"}
draw.vf.cell(tf, fi, "\\r?", i, nr); i<-i+1; { "questiondown"}
draw.vf.cell(tf, fi, "\\`A", i, nr); i<-i+1; { "Agrave"}
draw.vf.cell(tf, fi, "\\'A", i, nr); i<-i+1; { "Aacute"}
draw.vf.cell(tf, fi, "\\^A", i, nr); i<-i+1; { "Acircumflex"}
draw.vf.cell(tf, fi, "\\~A", i, nr); i<-i+1; { "Atilde"}
draw.vf.cell(tf, fi, "\\:A", i, nr); i<-i+1; { "Adieresis"}
draw.vf.cell(tf, fi, "\\oA", i, nr); i<-i+1; { "Aring"}
draw.vf.cell(tf, fi, "\\AE", i, nr); i<-i+1; { "AE"}
draw.vf.cell(tf, fi, "\\,C", i, nr); i<-i+1; { "Ccedilla"}
draw.vf.cell(tf, fi, "\\`E", i, nr); i<-i+1; { "Egrave"}
draw.vf.cell(tf, fi, "\\'E", i, nr); i<-i+1; { "Eacute"}
draw.vf.cell(tf, fi, "\\^E", i, nr); i<-i+1; { "Ecircumflex"}
draw.vf.cell(tf, fi, "\\:E", i, nr); i<-i+1; { "Edieresis"}
draw.vf.cell(tf, fi, "\\`I", i, nr); i<-i+1; { "Igrave"}
draw.vf.cell(tf, fi, "\\'I", i, nr); i<-i+1; { "Iacute"}
draw.vf.cell(tf, fi, "\\^I", i, nr); i<-i+1; { "Icircumflex"}
draw.vf.cell(tf, fi, "\\:I", i, nr); i<-i+1; { "Idieresis"}
draw.vf.cell(tf, fi, "\\~N", i, nr); i<-i+1; { "Ntilde"}
draw.vf.cell(tf, fi, "\\`O", i, nr); i<-i+1; { "Ograve"}
draw.vf.cell(tf, fi, "\\'O", i, nr); i<-i+1; { "Oacute"}
draw.vf.cell(tf, fi, "\\^O", i, nr); i<-i+1; { "Ocircumflex"}
draw.vf.cell(tf, fi, "\\~O", i, nr); i<-i+1; { "Otilde"}
draw.vf.cell(tf, fi, "\\:O", i, nr); i<-i+1; { "Odieresis"}
draw.vf.cell(tf, fi, "\\mu", i, nr); i<-i+1; { "multiply"}
draw.vf.cell(tf, fi, "\\/O", i, nr); i<-i+1; { "Oslash"}
draw.vf.cell(tf, fi, "\\`U", i, nr); i<-i+1; { "Ugrave"}
draw.vf.cell(tf, fi, "\\'U", i, nr); i<-i+1; { "Uacute"}
draw.vf.cell(tf, fi, "\\^U", i, nr); i<-i+1; { "Ucircumflex"}
draw.vf.cell(tf, fi, "\\:U", i, nr); i<-i+1; { "Udieresis"}
draw.vf.cell(tf, fi, "\\'Y", i, nr); i<-i+1; { "Yacute"}
draw.vf.cell(tf, fi, "\\ss", i, nr); i<-i+1; { "germandbls"} # WRONG!
draw.vf.cell(tf, fi, "\\`a", i, nr); i<-i+1; { "agrave"}
draw.vf.cell(tf, fi, "\\'a", i, nr); i<-i+1; { "aacute"}
draw.vf.cell(tf, fi, "\\^a", i, nr); i<-i+1; { "acircumflex"}
draw.vf.cell(tf, fi, "\\~a", i, nr); i<-i+1; { "atilde"}
draw.vf.cell(tf, fi, "\\:a", i, nr); i<-i+1; { "adieresis"}
draw.vf.cell(tf, fi, "\\oa", i, nr); i<-i+1; { "aring"}
draw.vf.cell(tf, fi, "\\ae", i, nr); i<-i+1; { "ae"}
draw.vf.cell(tf, fi, "\\,c", i, nr); i<-i+1; { "ccedilla"}
draw.vf.cell(tf, fi, "\\`e", i, nr); i<-i+1; { "egrave"}
draw.vf.cell(tf, fi, "\\'e", i, nr); i<-i+1; { "eacute"}
draw.vf.cell(tf, fi, "\\^e", i, nr); i<-i+1; { "ecircumflex"}
draw.vf.cell(tf, fi, "\\:e", i, nr); i<-i+1; { "edieresis"}
draw.vf.cell(tf, fi, "\\`i", i, nr); i<-i+1; { "igrave"}
draw.vf.cell(tf, fi, "\\'i", i, nr); i<-i+1; { "iacute"}
draw.vf.cell(tf, fi, "\\^i", i, nr); i<-i+1; { "icircumflex"}
draw.vf.cell(tf, fi, "\\:i", i, nr); i<-i+1; { "idieresis"}
draw.vf.cell(tf, fi, "\\~n", i, nr); i<-i+1; { "ntilde"}
draw.vf.cell(tf, fi, "\\`o", i, nr); i<-i+1; { "ograve"}
draw.vf.cell(tf, fi, "\\'o", i, nr); i<-i+1; { "oacute"}
draw.vf.cell(tf, fi, "\\^o", i, nr); i<-i+1; { "ocircumflex"}
draw.vf.cell(tf, fi, "\\~o", i, nr); i<-i+1; { "otilde"}
draw.vf.cell(tf, fi, "\\:o", i, nr); i<-i+1; { "odieresis"}
draw.vf.cell(tf, fi, "\\di", i, nr); i<-i+1; { "divide"}
draw.vf.cell(tf, fi, "\\/o", i, nr); i<-i+1; { "oslash"}
draw.vf.cell(tf, fi, "\\`u", i, nr); i<-i+1; { "ugrave"}
draw.vf.cell(tf, fi, "\\'u", i, nr); i<-i+1; { "uacute"}
draw.vf.cell(tf, fi, "\\^u", i, nr); i<-i+1; { "ucircumflex"}
draw.vf.cell(tf, fi, "\\:u", i, nr); i<-i+1; { "udieresis"}
draw.vf.cell(tf, fi, "\\'y", i, nr); i<-i+1; { "yacute"}
draw.vf.cell(tf, fi, "\\:y", i, nr); i<-i+1; { "ydieresis"}
nr <- 25
nc <- 2
make.table(nr, nc)
i <- 0
draw.title("Special Escape Sequences", i, nr, nc)
draw.vf.cell(tf, fi, "\\AR", i, nr); i<-i+1; { "aries"}
draw.vf.cell(tf, fi, "\\TA", i, nr); i<-i+1; { "taurus"}
draw.vf.cell(tf, fi, "\\GE", i, nr); i<-i+1; { "gemini"}
draw.vf.cell(tf, fi, "\\CA", i, nr); i<-i+1; { "cancer"}
draw.vf.cell(tf, fi, "\\LE", i, nr); i<-i+1; { "leo"}
draw.vf.cell(tf, fi, "\\VI", i, nr); i<-i+1; { "virgo"}
draw.vf.cell(tf, fi, "\\LI", i, nr); i<-i+1; { "libra"}
draw.vf.cell(tf, fi, "\\SC", i, nr); i<-i+1; { "scorpio"}
draw.vf.cell(tf, fi, "\\SG", i, nr); i<-i+1; { "sagittarius"}
draw.vf.cell(tf, fi, "\\CP", i, nr); i<-i+1; { "capricornus"}
draw.vf.cell(tf, fi, "\\AQ", i, nr); i<-i+1; { "aquarius"}
draw.vf.cell(tf, fi, "\\PI", i, nr); i<-i+1; { "pisces"}
draw.vf.cell(tf, fi, "\\~-", i, nr); i<-i+1; { "modifiedcongruent"}
draw.vf.cell(tf, fi, "\\hb", i, nr); i<-i+1; { "hbar"}
draw.vf.cell(tf, fi, "\\IB", i, nr); i<-i+1; { "interbang"}
draw.vf.cell(tf, fi, "\\Lb", i, nr); i<-i+1; { "lambdabar"}
draw.vf.cell(tf, fi, "\\UD", i, nr); i<-i+1; { "undefined"}
draw.vf.cell(tf, fi, "\\SO", i, nr); i<-i+1; { "sun"}
draw.vf.cell(tf, fi, "\\ME", i, nr); i<-i+1; { "mercury"}
draw.vf.cell(tf, fi, "\\VE", i, nr); i<-i+1; { "venus"}
draw.vf.cell(tf, fi, "\\EA", i, nr); i<-i+1; { "earth"}
draw.vf.cell(tf, fi, "\\MA", i, nr); i<-i+1; { "mars"}
draw.vf.cell(tf, fi, "\\JU", i, nr); i<-i+1; { "jupiter"}
draw.vf.cell(tf, fi, "\\SA", i, nr); i<-i+1; { "saturn"}
draw.vf.cell(tf, fi, "\\UR", i, nr); i<-i+1; { "uranus"}
draw.vf.cell(tf, fi, "\\NE", i, nr); i<-i+1; { "neptune"}
draw.vf.cell(tf, fi, "\\PL", i, nr); i<-i+1; { "pluto"}
draw.vf.cell(tf, fi, "\\LU", i, nr); i<-i+1; { "moon"}
draw.vf.cell(tf, fi, "\\CT", i, nr); i<-i+1; { "comet"}
draw.vf.cell(tf, fi, "\\ST", i, nr); i<-i+1; { "star"}
draw.vf.cell(tf, fi, "\\AS", i, nr); i<-i+1; { "ascendingnode"}
draw.vf.cell(tf, fi, "\\DE", i, nr); i<-i+1; { "descendingnode"}
draw.vf.cell(tf, fi, "\\s-", i, nr); i<-i+1; { "s1"}
draw.vf.cell(tf, fi, "\\dg", i, nr); i<-i+1; { "dagger"}
draw.vf.cell(tf, fi, "\\dd", i, nr); i<-i+1; { "daggerdbl"}
draw.vf.cell(tf, fi, "\\li", i, nr); i<-i+1; { "line integral"}
draw.vf.cell(tf, fi, "\\-+", i, nr); i<-i+1; { "minusplus"}
draw.vf.cell(tf, fi, "\\||", i, nr); i<-i+1; { "parallel"}
draw.vf.cell(tf, fi, "\\rn", i, nr); i<-i+1; { "overscore"}
draw.vf.cell(tf, fi, "\\ul", i, nr); i<-i+1; { "underscore"}
nr <- 25
nc <- 3
make.table(nr, nc)
code <- c(300:307,310:317,320:327,330:337,340:347,350:357,360:367,370:377,
243,263)
string <- c(
"\300","\301","\302","\303","\304","\305","\306","\307",
"\310","\311","\312","\313","\314","\315",
"\316","\317","\320","\321","\322","\323",
"\324","\325","\326","\327","\330","\331",
"\332","\333","\334","\335","\336","\337",
"\340","\341","\342","\343","\344","\345","\346","\347",
"\350","\351","\352","\353","\354","\355",
"\356","\357","\360","\361","\362","\363",
"\364","\365","\366","\367","\370","\371",
"\372","\373","\374","\375","\376","\377","\243","\263")
draw.title("Cyrillic Octal Codes", i = 0, nr ,nc)
for (i in 1:66)
draw.vf.cell(tf, "cyrillic", string[i], i-1, nr,
raw.string=paste("\\", as.character(code[i]), sep=""))
nr <- 25
nc <- 3
make.table(nr, nc)
code <- c(252,254,256,262:269,275,278:281,284,745,746,750:768,796:802,
804:807,809,814:828,830:834,840:844)
draw.title("Raw Hershey Escape Sequences", i=0, nr, nc)
for (i in 1:75)
draw.vf.cell(tf, fi, paste("\\#H",formatC(code[i],wid=4,flag=0),sep=""),
i-1, nr)
make.table(nr, nc)
code <- c(845:847,850:856,860:874,899:909,2296:2299,2318:2332,2367:2382,
4014,4109)
draw.title("More Raw Hershey Escape Sequences", i=0, nr, nc)
for (i in 1:73)
draw.vf.cell(tf, fi, paste("\\#H",formatC(code[i],wid=4,flag=0),sep=""),
i-1, nr)
par(oldpar)