Logistic {base} | R Documentation |
Density, distribution function, quantile function and random
generation for the logistic distribution with parameters
location
and scale
.
dlogis(x, location = 0, scale = 1, log = FALSE)
plogis(q, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
qlogis(p, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
rlogis(n, location = 0, scale = 1)
x , q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. If |
location , scale |
location and scale parameters. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
If location
or scale
are omitted, they assume the
default values of 0
and 1
respectively.
The Logistic distribution with location
= \mu
and
scale
= \sigma
has distribution function
F(x) = \frac{1}{1 + e^{-(x-\mu)/\sigma}}%
and density
f(x)= \frac{1}{\sigma}\frac{e^{(x-\mu)/\sigma}}{(1 + e^{(x-\mu)/\sigma})^2}%
It is a long-tailed distribution with mean \mu
and variance
\pi^2/3 \sigma^2
.
dlogis
gives the density,
plogis
gives the distribution function,
qlogis
gives the quantile function, and
rlogis
generates random deviates.
eps <- 100 * .Machine$double.eps
x <- c(0:4, rlogis(100))
all.equal(plogis(x), 1 / (1 + exp(-x)), tol = eps)
all.equal(plogis(x, lower=FALSE), exp(-x)/ (1 + exp(-x)), tol = eps)
all.equal(plogis(x, lower=FALSE, log=TRUE), -log(1 + exp(x)), tol = eps)
all.equal(dlogis(x), exp(x) * (1 + exp(x))^-2, tol = eps)
var(rlogis(4000, 0, s = 5))# approximately (+/- 3)
pi^2/3 * 5^2