Weibull {base} | R Documentation |
Density, distribution function, quantile function and random
generation for the Weibull distribution with parameters shape
and scale
.
dweibull(x, shape, scale = 1, log = FALSE)
pweibull(q, shape, scale = 1, lower.tail = TRUE, log.p = FALSE)
qweibull(p, shape, scale = 1, lower.tail = TRUE, log.p = FALSE)
rweibull(n, shape, scale = 1)
x , q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. If |
shape , scale |
shape and scale parameters, the latter defaulting to 1. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
The Weibull distribution with shape
parameter a
and
scale
parameter \sigma
has density given by
f(x) = (a/\sigma) {(x/\sigma)}^{a-1} \exp (-{(x/\sigma)}^{a})
for x > 0
.
The cumulative is
F(x) = 1 - \exp(-{(x/\sigma)}^a)
, the
mean is E(X) = \sigma \Gamma(1 + 1/a)
, and
the Var(X) = \sigma^2(\Gamma(1 + 2/a)-\Gamma(1 + 1/a))
.
dweibull
gives the density,
pweibull
gives the distribution function,
qweibull
gives the quantile function, and
rweibull
generates random deviates.
The cumulative hazard H(t) = - \log(1 - F(t))
is -pweibull(t, a, b, lower = FALSE, log = TRUE)
which is just
H(t) = {(t/b)}^a
.
dexp
for the Exponential which is a special case of a
Weibull distribution.
x <- c(0,rlnorm(50))
all.equal(dweibull(x, shape = 1), dexp(x))
all.equal(pweibull(x, shape = 1, scale = pi), pexp(x, rate = 1/pi))
## Cumulative hazard H():
all.equal(pweibull(x, 2.5, pi, lower=FALSE, log=TRUE), -(x/pi)^2.5, tol=1e-15)
all.equal(qweibull(x/11, shape = 1, scale = pi), qexp(x/11, rate = 1/pi))