predict.glm {base} | R Documentation |
Obtains predictions and optionally estimates standard errors of those predictions from a fitted generalized linear model object.
## S3 method for class 'glm'
predict(object, newdata = NULL, type = c("link", "response", "terms"),
se.fit = FALSE, dispersion = NULL, terms = NULL, ...)
object |
a fitted object of class inheriting from |
newdata |
optionally, a new data frame from which to make the predictions. If omitted, the fitted linear predictors are used. |
type |
the type of prediction required. The default is on the
scale of the linear predictors; the alternative The value of this argument can be abbreviated. |
se.fit |
logical switch indicating if standard errors are required. |
dispersion |
the dispersion of the GLM fit to be assumed in
computing the standard errors. If omitted, that returned by
|
terms |
with |
... |
further arguments passed to or from other methods. |
If se = FALSE
, a vector or matrix of predictions. If se
= TRUE
, a list with components
fit |
Predictions |
se.fit |
Estimated standard errors |
residual.scale |
A scalar giving the square root of the dispersion used in computing the standard errors. |
B.D. Ripley
glm
, SafePrediction
## example from Venables and Ripley (1997, pp. 231-3.)
ldose <- rep(0:5, 2)
numdead <- c(1, 4, 9, 13, 18, 20, 0, 2, 6, 10, 12, 16)
sex <- factor(rep(c("M", "F"), c(6, 6)))
SF <- cbind(numdead, numalive=20-numdead)
budworm.lg <- glm(SF ~ sex*ldose, family=binomial)
summary(budworm.lg)
plot(c(1,32), c(0,1), type = "n", xlab = "dose",
ylab = "prob", log = "x")
text(2^ldose, numdead/20, as.character(sex))
ld <- seq(0, 5, 0.1)
lines(2^ld, predict(budworm.lg, data.frame(ldose=ld,
sex=factor(rep("M", length(ld)), levels=levels(sex))),
type = "response"))
lines(2^ld, predict(budworm.lg, data.frame(ldose=ld,
sex=factor(rep("F", length(ld)), levels=levels(sex))),
type = "response"))