nlsModel {nls} | R Documentation |
This is the constructor for nlsModel
objects, which are
function closures for several functions in a list. The closure
includes a nonlinear model formula, data values for the formula, as
well as parameters and their values.
nlsModel(form, data, start)
form |
a nonlinear model formula |
data |
a data frame or a list in which to evaluate the variables from the model formula |
start |
a named list or named numeric vector of starting estimates for the parameters in the model |
An nlsModel
object is primarily used within the nls
function. It encapsulates the model, the data, and the parameters in
an environment and provides several methods to access characteristics
of the model. It forms an important component of the object returned
by the nls
function.
The value is a list of functions that share a common environment.
resid |
returns the residual vector evaluated at the current parameter values |
fitted |
returns the fitted responses and their gradient at the current parameter values |
formula |
returns the model formula |
deviance |
returns the residual sum-of-squares at the current parameter values |
gradient |
returns the gradient of the model function at the current parameter values |
conv |
returns the relative-offset convergence criterion evaluated at the current parmeter values |
incr |
returns the parameter increment calculated according to the Gauss-Newton formula |
setPars |
a function with one argument, |
getPars |
returns the current value of the model parameters as a numeric vector |
getAllPars |
returns the current value of the model parameters as a numeric vector |
getEnv |
returns the environment shared by these functions |
trace |
the function that is called at each iteration if tracing is enabled |
Rmat |
the upper triangular factor of the gradient array at the current parameter values |
predict |
takes as argument |
Douglas M. Bates and Saikat DebRoy
Bates, D.M. and Watts, D.G. (1988), Nonlinear Regression Analysis and Its Applications, Wiley
nls
data( DNase )
DNase1 <- DNase[ DNase$Run == 1, ]
mod <-
nlsModel(density ~ SSlogis( log(conc), Asym, xmid, scal ),
DNase1, list( Asym = 3, xmid = 0, scal = 1 ))
mod$getPars() # returns the parameters as a list
mod$deviance() # returns the residual sum-of-squares
mod$resid() # returns the residual vector and the gradient
mod$incr() # returns the suggested increment
mod$setPars( unlist(mod$getPars()) + mod$incr() ) # set new parameter values
mod$getPars() # check the parameters have changed
mod$deviance() # see if the parameter increment was successful
mod$trace() # check the tracing
mod$Rmat() # R matrix from the QR decomposition of the gradient