This help topic is for R version 1.5.0. For the current version of R, try https://stat.ethz.ch/R-manual/R-patched/library/nls/html/nlsModel.html
nlsModel {nls}R Documentation

Create an nlsModel Object

Description

This is the constructor for nlsModel objects, which are function closures for several functions in a list. The closure includes a nonlinear model formula, data values for the formula, as well as parameters and their values.

Usage

nlsModel(form, data, start)

Arguments

form

a nonlinear model formula

data

a data frame or a list in which to evaluate the variables from the model formula

start

a named list or named numeric vector of starting estimates for the parameters in the model

Details

An nlsModel object is primarily used within the nls function. It encapsulates the model, the data, and the parameters in an environment and provides several methods to access characteristics of the model. It forms an important component of the object returned by the nls function.

Value

The value is a list of functions that share a common environment.

resid

returns the residual vector evaluated at the current parameter values

fitted

returns the fitted responses and their gradient at the current parameter values

formula

returns the model formula

deviance

returns the residual sum-of-squares at the current parameter values

gradient

returns the gradient of the model function at the current parameter values

conv

returns the relative-offset convergence criterion evaluated at the current parmeter values

incr

returns the parameter increment calculated according to the Gauss-Newton formula

setPars

a function with one argument, pars. It sets the parameter values for the nlsModel object and returns a logical value denoting a singular gradient array.

getPars

returns the current value of the model parameters as a numeric vector

getAllPars

returns the current value of the model parameters as a numeric vector

getEnv

returns the environment shared by these functions

trace

the function that is called at each iteration if tracing is enabled

Rmat

the upper triangular factor of the gradient array at the current parameter values

predict

takes as argument newdata,a data.frame and returns the predicted response for newdata.

Author(s)

Douglas M. Bates and Saikat DebRoy

References

Bates, D.M. and Watts, D.G. (1988), Nonlinear Regression Analysis and Its Applications, Wiley

See Also

nls

Examples

data( DNase )
DNase1 <- DNase[ DNase$Run == 1, ]
mod <-
 nlsModel(density ~ SSlogis( log(conc), Asym, xmid, scal ),
          DNase1, list( Asym = 3, xmid = 0, scal = 1 ))
mod$getPars()     # returns the parameters as a list
mod$deviance()    # returns the residual sum-of-squares
mod$resid()       # returns the residual vector and the gradient
mod$incr()        # returns the suggested increment
mod$setPars( unlist(mod$getPars()) + mod$incr() )  # set new parameter values
mod$getPars()     # check the parameters have changed
mod$deviance()    # see if the parameter increment was successful
mod$trace()       # check the tracing
mod$Rmat()        # R matrix from the QR decomposition of the gradient