ecdf {stepfun} | R Documentation |
Compute or plot an empirical cumulative distribution function.
ecdf(x)
## S3 method for class 'ecdf'
plot(..., verticals = FALSE, col.01line = "gray70")
## S3 method for class 'ecdf'
print(x, digits= getOption("digits") - 2, ...)
## S3 method for class 'ecdf'
summary(object, ...)
x |
numeric vector of “observations” in |
... |
arguments to be passed to |
verticals |
see |
col.01line |
numeric or character specifying the color of the
horizontal lines at y=0 and 1, see |
object |
(or |
digits |
number of significant digits to use, see |
The e.c.d.f. (empirical cumulative distribution function)
F_n
is a step
function with jump 1/n
at each observation (possibly with
multiple jumps at one place if there are ties).
For observations
x
= (
x_1,x_2
, ... x_n)
,
F_n
is the fraction of observations less or equal to t
,
i.e.,
F_n(t) = \#\{x_i\le t\}\ / n
= \frac1 n\sum_{i=1}^n \mathbf{1}_{[x_i \le t]}.
The function plot.ecdf
which implements the plot
method for ecdf
objects, is implemented via a call to
plot.stepfun
; see its documentation.
For ecdf
, a function of class "ecdf"
, inheriting from the
"stepfun"
class.
Martin Maechler, maechler@stat.math.ethz.ch.
stepfun
, the more general class of step functions,
approxfun
and splinefun
.
##-- Simple didactical ecdf example:
Fn <- ecdf(rnorm(12))
Fn; summary(Fn)
12*Fn(knots(Fn)) == 1:12 ## == 1:12 if and only if there are no ties !
y <- round(rnorm(12),1); y[3] <- y[1]
Fn12 <- ecdf(y)
Fn12
print(knots(Fn12), dig=2)
12*Fn12(knots(Fn12)) ## ~= 1:12 if there where no ties
summary(Fn12)
summary.stepfun(Fn12)
print(ls.Fn12 <- ls(env= environment(Fn12)))
##[1] "f" "method" "n" "ties" "x" "y" "yleft" "yright"
12 * Fn12((-20:20)/10)
###----------------- Plotting --------------------------
op <- par(mfrow=c(3,1), mgp=c(1.5, 0.8,0), mar= .1+c(3,3,2,1))
F10 <- ecdf(rnorm(10))
summary(F10)
plot(F10)
plot(F10, verticals= TRUE, do.p = FALSE)
plot(Fn12)# , lwd=2) dis-regarded
xx <- unique(sort(c(seq(-3,2, length=201), knots(Fn12))))
lines(xx, Fn12(xx), col='blue')
abline(v=knots(Fn12),lty=2,col='gray70')
plot(xx, Fn12(xx), type='b', cex=.1)#- plot.default
plot(Fn12, col.h='red', add= TRUE) #- plot method
abline(v=knots(Fn12),lty=2,col='gray70')
plot(Fn12, verticals=TRUE, col.p='blue', col.h='red',col.v='bisque')
par(op)
##-- this works too (automatic call to ecdf(.)):
plot.ecdf(rnorm(24))