plot.stepfun {stepfun} | R Documentation |
Method of the generic plot
for stepfun
objects and utility for plotting piecewise constant functions.
## S3 method for class 'stepfun'
plot(x, xval, xlim, xlab = "x", ylab = "f(x)", main = NULL,
add = FALSE, verticals = TRUE, do.points = TRUE,
pch = par("pch"), col.points=par("col"), cex.points=par("cex"),
col.hor = par("col"), col.vert= par("col"),
lty = par("lty"), lwd = par("lwd"), ...)
x |
an R object inheriting from |
xval |
numeric vector of abscissa values at which to evaluate
|
xlim |
numeric(2); range of |
xlab , ylab |
labels of x and y axis. |
main |
main title. |
add |
logical; if |
verticals |
logical; if |
do.points |
logical; if |
pch |
character; point character if |
col.points |
character or integer code; color of points if
|
cex.points |
numeric; character expansion factor if |
col.hor |
color of horizontal lines. |
col.vert |
color of vertical lines. |
lty , lwd |
line type and thickness for all lines. |
... |
further arguments of |
A list with two components
t |
abscissa (x) values, including the two outermost ones. |
y |
y values ‘in between’ the |
Martin Maechler maechler@stat.math.ethz.ch, 1990, 1993; ported to R, 1997.
ecdf
for empirical distribution functions as
special step functions,
approxfun
and splinefun
.
y0 <- c(1,2,4,3)
sfun0 <- stepfun(1:3, y0, f = 0)
sfun.2 <- stepfun(1:3, y0, f = .2)
sfun1 <- stepfun(1:3, y0, f = 1)
tt <- seq(0,3, by=0.1)
op <- par(mfrow=c(2,2))
plot(sfun0); plot(sfun0, xval=tt, add=TRUE, col.h="bisque")
plot(sfun.2);plot(sfun.2,xval=tt, add=TRUE, col.h="orange")
plot(sfun1); plot(sfun1, xval=tt, add=TRUE, col.h="coral")
##-- This is revealing :
plot(sfun0, verticals= FALSE,
main = "stepfun(x, y0, f=f) for f = 0, .2, 1")
for(i in 1:3)
plot(list(sfun0,sfun.2,sfun1)[[i]], add=TRUE, col.h=i, col.v=i)
legend(2.5, 1.9, paste("f =", c(0,0.2,1)), col=1:3, lty=1, y.inter=1); par(op)
##-- this works too (automatic call to ecdf(.)):
plot.stepfun(rt(50, df=3), col.vert = "gray20")