varimax {mva} | R Documentation |
Rotation Methods for Factor Analysis
Description
These functions ‘rotate’ loading matrices in factor analysis.
Usage
varimax(x, normalize = TRUE, eps = 1e-5)
promax(x, m = 4)
Arguments
x |
A loadings matrix, with |
m |
The power used the target for |
normalize |
logical. Should Kaiser normalization be performed?
If so the rows of |
eps |
The tolerance for stopping: the relative change in the sum of singular values. |
Details
These seek a ‘rotation’ of the factors x %*% T
that aims to
clarify the structure of the loadings matrix. The matrix T
is a rotation (possibly with reflection) for varimax
, but a
general linear transformation for promax
, with the variance of
the factors being preserved.
Value
A list with components
loadings |
The ‘rotated’ loadings matrix, |
rotmat |
The 'rotation matrix. |
Author(s)
B. D. Ripley
References
Hendrickson, A. E. and White, P. O. (1964) Promax: a quick method for rotation to orthogonal oblique structure. British Journal of Statistical Psychology, 17, 65–70.
Horst, P. (1965) Factor Analysis of Data Matrices. Holt, Rinehart and Winston. Chapter 10.
Kaiser, H. F. (1958) The varimax criterion for analytic rotation in factor analysis. Psychometrika 23, 187–200.
Lawley, D. N. and Maxwell, A. E. (1971) Factor Analysis as a Statistical Method. Second edition. Butterworths.
See Also
factanal
, Harman74.cor
.
Examples
data(swiss)
## varimax with normalize = T is the default
fa <- factanal( ~., 2, data = swiss)
varimax(fa$loadings, normalize = FALSE)
promax(fa$loadings)