TDist {base} | R Documentation |
Density, distribution function, quantile function and random
generation for the t distribution with df
degrees of freedom
(and optional noncentrality parameter ncp
).
dt(x, df, ncp=0, log = FALSE)
pt(q, df, ncp=0, lower.tail = TRUE, log.p = FALSE)
qt(p, df, lower.tail = TRUE, log.p = FALSE)
rt(n, df)
x , q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. If |
df |
degrees of freedom ( |
ncp |
non-centrality parameter |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
The t
distribution with df
= \nu
degrees of
freedom has density
f(x) = \frac{\Gamma ((\nu+1)/2)}{\sqrt{\pi \nu} \Gamma (\nu/2)}
(1 + x^2/\nu)^{-(\nu+1)/2}%
for all real x
.
It has mean 0
(for \nu > 1
) and
variance \frac{\nu}{\nu-2}
(for \nu > 2
).
The general non-central t
with parameters (\nu,\delta)
= (df, ncp)
is defined as a the distribution of
T_{\nu}(\delta) := \frac{U + \delta}{\chi_{\nu}/\sqrt{\nu}}
where U
and \chi_{\nu}
are independent random
variables, U \sim {\cal N}(0,1)
, and
\chi^2_\nu
is chi-squared, see pchisq
.
The most used applications are power calculations for t
-tests:
Let T= \frac{\bar{X} - \mu_0}{S/\sqrt{n}}
where
\bar{X}
is the mean
and S
the sample standard
deviation (sd
) of X_1,X_2,\dots,X_n
which are i.i.d.
N(\mu,\sigma^2)
.
Then T
is distributed as non-centrally t
with
df
= n-1
degrees of freedom and non-centrality parameter
ncp
= (\mu - \mu_0) \sqrt{n}/\sigma
.
dt
gives the density,
pt
gives the distribution function,
qt
gives the quantile function, and
rt
generates random deviates.
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth \& Brooks/Cole. (except non-central versions.)
Lenth, R. V. (1989). Algorithm AS 243 —
Cumulative distribution function of the non-central t
distribution,
Appl.\ Statist. 38, 185–189.
df
for the F distribution.
1 - pt(1:5, df = 1)
qt(.975, df = c(1:10,20,50,100,1000))
tt <- seq(0,10, len=21)
ncp <- seq(0,6, len=31)
ptn <- outer(tt,ncp, function(t,d) pt(t, df = 3, ncp=d))
image(tt,ncp,ptn, zlim=c(0,1),main=t.tit <- "Non-central t - Probabilities")
persp(tt,ncp,ptn, zlim=0:1, r=2, phi=20, theta=200, main=t.tit,
xlab = "t", ylab = "noncentrality parameter", zlab = "Pr(T <= t)")