Extract {base} | R Documentation |
Operators acting on vectors, matrices, arrays and lists to extract or replace parts.
x[i]
x[i, j, ... , drop = TRUE]
x[[i, exact = TRUE]]
x[[i, j, ..., exact = TRUE]]
x$name
x |
object from which to extract element(s) or in which to replace element(s). |
i , j , ... |
indices specifying elements to extract or replace. Indices are
For When indexing arrays by An index value of |
name |
A literal character string or a name (possibly backtick
quoted). For extraction, this is normally (see under
‘Environments’) partially matched to the |
drop |
For matrices and arrays. If |
exact |
Controls possible partial matching of |
These operators are generic. You can write methods to handle indexing
of specific classes of objects, see InternalMethods as well as
[.data.frame
and [.factor
. The
descriptions here apply only to the default methods. Note that
separate methods are required for the replacement functions
[<-
, [[<-
and $<-
for use when indexing occurs on
the assignment side of an expression.
The most important distinction between [
, [[
and
$
is that the [
can select more than one element whereas
the other two select a single element.
The default methods work somewhat differently for atomic vectors,
matrices/arrays and for recursive (list-like, see
is.recursive
) objects. $
is only valid for
recursive objects, and is only discussed in the section below on
recursive objects. Its use on non-recursive objects was deprecated in
R 2.5.0 and removed in R 2.7.0.
Subsetting (except by an empty index) will drop all attributes except
names
, dim
and dimnames
.
Indexing can occur on the right-hand-side of an expression for
extraction, or on the left-hand-side for replacement. When an index
expression appears on the left side of an assignment (known as
subassignment) then that part of x
is set to the value
of the right hand side of the assignment. In this case no partial
matching of character indices is done, and the left-hand-side is
coerced as needed to accept the values. Attributes are preserved
(although names
, dim
and dimnames
will be
adjusted suitably). Subassignment is done sequentially, so if an
index is specified more than once the latest assigned value for an
index will result.
It is an error to apply any of these operators to an object which is not subsettable (e.g. a function).
The usual form of indexing is "["
. "[["
can be used to
select a single element, but "["
can also do so.
The index object i
can be numeric, logical, character or empty.
Indexing by factors is allowed and is equivalent to indexing by the
numeric codes (see factor
) and not by the character
values which are printed (for which use [as.character(i)]
).
An empty index selects all values: this is most often used to replace
all the entries but keep the attributes
.
Matrices and arrays are vectors with a dimension attribute and so all
the vector forms of indexing can be used with a single index. The
result will be an unnamed vector unless x
is one-dimensional
when it will be a one-dimensional array.
The most common form of indexing a k
-dimensional array is to
specify k
indices to [
. As for vector indexing, the
indices can be numeric, logical, character, empty or even factor.
An empty index (a comma separated blank) indicates that all entries in
that dimension are selected.
The argument drop
applies to this form of indexing.
A third form of indexing is via a numeric matrix with the one column
for each dimension: each row of the index matrix then selects a single
element of the array, and the result is a vector. Negative indices are
not allowed in the index matrix. NA
and zero values are allowed:
rows of an index matrix containing a zero are ignored, whereas rows
containing an NA
produce an NA
in the result.
A vector obtained by matrix indexing will be unnamed unless x
is one-dimensional when the row names (if any) will be indexed to
provide names for the result.
Indexing by [
is similar to atomic vectors and selects a list
of the specified element(s).
Both [[
and $
select a single element of the list. The
main difference is that $
does not allow computed indices,
whereas [[
does. x$name
is equivalent to
x[["name", exact = FALSE]]
. Also, the partial matching
behavior of [[
can be controlled using the exact
argument.
[
and [[
are sometimes applied to other recursive
objects such as calls and expressions. Pairlists are
coerced to lists for extraction by [
, but all three operators
can be used for replacement.
[[
can be applied recursively to lists, so that if the single
index i
is a vector of length p
, alist[[i]]
is
equivalent to alist[[i1]]...[[ip]]
providing all but the
final indexing results in a list.
When either [[
or $
is used for replacement, a value of
NULL
deletes the corresponding item of the list.
When $<-
is applied to a NULL
x
, it first coerces
x
to list()
. This is what also happens with [[<-
if the replacement value value
is of length greater than one:
if value
has length 1 or 0, x
is first coerced to a
zero-length vector of the type of value
.
Both $
and [[
can be applied to environments. Only
character indices are allowed and no partial matching is done. The
semantics of these operations are those of get(i, env=x,
inherits=FALSE)
. If no match is found then NULL
is
returned. The replacement versions, $<-
and [[<-
, can
also be used. Again, only character arguments are allowed. The
semantics in this case are those of assign(i, value, env=x,
inherits=FALSE)
. Such an assignment will either create a new
binding or change the existing binding in x
.
When extracting, a numerical, logical or character NA
index picks
an unknown element and so returns NA
in the corresponding
element of a logical, integer, numeric, complex or character result,
and NULL
for a list. (It returns 00
for a raw result.]
When replacing (that is using indexing on the lhs of an
assignment) NA
does not select any element to be replaced. As
there is ambiguity as to whether an element of the rhs should
be used or not, this is only allowed if the rhs value is of length one
(so the two interpretations would have the same outcome).
Note that these operations do not match their index arguments in the
standard way: argument names are ignored and positional matching only is
used. So m[j=2,i=1]
is equivalent to m[2,1]
and
not to m[1,2]
.
This may not be true for methods defined for them; for example it is
not true for the data.frame
methods described in
[.data.frame
.
To avoid confusion, do not name index arguments (but drop
and
exact
must be named).
These operators are also S4 generic, but as primitives, S4 methods will be dispatched only on S4 objects.
S4 methods for $
will be passed name
as a character
vector: despite the message given by getGeneric("$")
you cannot
usefully write methods based on the class of name
.
Character indices can in some circumstances be partially matched (see
pmatch
) to the names or dimnames of the object being
subsetted (but never for subassignment). Unlike S (Becker et
al p. 358)), R has never used partial matching when extracting by
[
, and as from R 2.7.0 partial matching is not by default used
by [[
(see argument exact
).
Thus the default behaviour is to use partial matching only when
extracting from recursive objects (except environments) by $
.
Even in that case, warnings can be switched on by
options(warnPartialMatchAttr = TRUE)
.
Neither empty (""
) nor NA
indices match any names, not
even empty nor missing names. If any object has no names or
appropriate dimnames, they are taken as all ""
and so match
nothing.
The documented behaviour of S is that an NA
replacement index
‘goes nowhere’ but uses up an element of value
(Becker et al p. 359). However, that has not been true of
other implementations.
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth & Brooks/Cole.
names
for details of matching to names, and
pmatch
for partial matching.
list
, array
, matrix
.
[.data.frame
and [.factor
for the
behaviour when applied to data.frame and factors.
Syntax
for operator precedence, and the
R Language reference manual about indexing details.
x <- 1:12; m <- matrix(1:6, nrow=2); li <- list(pi=pi, e = exp(1))
x[10] # the tenth element of x
x <- x[-1] # delete the 1st element of x
m[1,] # the first row of matrix m
m[1, , drop = FALSE] # is a 1-row matrix
m[,c(TRUE,FALSE,TRUE)]# logical indexing
m[cbind(c(1,2,1),3:1)]# matrix index
m <- m[,-1] # delete the first column of m
li[[1]] # the first element of list li
y <- list(1,2,a=4,5)
y[c(3,4)] # a list containing elements 3 and 4 of y
y$a # the element of y named a
## non-integer indices are truncated:
(i <- 3.999999999) # "4" is printed
(1:5)[i] # 3
## recursive indexing into lists
z <- list( a=list( b=9, c='hello'), d=1:5)
unlist(z)
z[[c(1, 2)]]
z[[c(1, 2, 1)]] # both "hello"
z[[c("a", "b")]] <- "new"
unlist(z)
## check $ and [[ for environments
e1 <- new.env()
e1$a <- 10
e1[["a"]]
e1[["b"]] <- 20
e1$b
ls(e1)