xtabs {stats} | R Documentation |
Create a contingency table from cross-classifying factors, usually contained in a data frame, using a formula interface.
xtabs(formula = ~., data = parent.frame(), subset, na.action,
exclude = c(NA, NaN), drop.unused.levels = FALSE)
formula |
a formula object with the cross-classifying variables
(separated by |
data |
an optional matrix or data frame (or similar: see
|
subset |
an optional vector specifying a subset of observations to be used. |
na.action |
a function which indicates what should happen when
the data contain |
exclude |
a vector of values to be excluded when forming the set of levels of the classifying factors. |
drop.unused.levels |
a logical indicating whether to drop unused
levels in the classifying factors. If this is |
There is a summary
method for contingency table objects created
by table
or xtabs
, which gives basic information and
performs a chi-squared test for independence of factors (note that the
function chisq.test
currently only handles 2-d tables).
If a left hand side is given in formula
, its entries are simply
summed over the cells corresponding to the right hand side; this also
works if the lhs does not give counts.
A contingency table in array representation of class c("xtabs",
"table")
, with a "call"
attribute storing the matched call.
table
for traditional cross-tabulation, and
as.data.frame.table
which is the inverse operation of
xtabs
(see the DF
example below).
## 'esoph' has the frequencies of cases and controls for all levels of
## the variables 'agegp', 'alcgp', and 'tobgp'.
xtabs(cbind(ncases, ncontrols) ~ ., data = esoph)
## Output is not really helpful ... flat tables are better:
ftable(xtabs(cbind(ncases, ncontrols) ~ ., data = esoph))
## In particular if we have fewer factors ...
ftable(xtabs(cbind(ncases, ncontrols) ~ agegp, data = esoph))
## This is already a contingency table in array form.
DF <- as.data.frame(UCBAdmissions)
## Now 'DF' is a data frame with a grid of the factors and the counts
## in variable 'Freq'.
DF
## Nice for taking margins ...
xtabs(Freq ~ Gender + Admit, DF)
## And for testing independence ...
summary(xtabs(Freq ~ ., DF))
## Create a nice display for the warp break data.
warpbreaks$replicate <- rep(1:9, len = 54)
ftable(xtabs(breaks ~ wool + tension + replicate, data = warpbreaks))