Package index
- 
          as_mlx()
- Create MLX array from R object
- 
          is.mlx()
- Test if object is an MLX array
- 
          Rmlx-packageRmlx
- Rmlx: R Interface to Apple's MLX Arrays
- 
          mlx-methods
- Base R generics with mlx methods
- 
          mlx_dim()
- Get dimensions helper
- 
          mlx_dtype()
- Get data type helper
- 
          mlx_eval()
- Force evaluation of lazy MLX operations
- 
          `[`(<mlx>)`[<-`(<mlx>)
- Subset MLX array
- 
          dim(<mlx>)
- Get dimensions of MLX array
- 
          `dim<-`(<mlx>)
- Set dimensions of MLX array
- 
          length(<mlx>)
- Get length of MLX array
- 
          print(<mlx>)
- Print MLX array
- 
          str(<mlx>)
- Object structure for MLX array
- 
          t(<mlx>)
- Transpose of MLX matrix
- 
          as.matrix(<mlx>)
- Convert MLX array to R matrix/array
- 
          as.array(<mlx>)
- Convert MLX array to R array
- 
          as.vector(<mlx>)
- Convert MLX array to R vector
- 
          mlx_default_device()
- Get or set default MLX device
- 
          with_default_device()
- Temporarily set the default MLX device
- 
          mlx_new_stream()mlx_default_stream()
- MLX streams for asynchronous execution
- 
          mlx_set_default_stream()
- Set the default MLX stream
- 
          mlx_synchronize()
- Synchronize MLX execution
- 
          mlx_forward()
- Forward pass utility
- 
          mlx_grad()mlx_value_grad()
- Automatic differentiation for MLX functions
- 
          mlx_stop_gradient()
- Stop gradient propagation through an mlx array
- 
          mlx_compile()
- Compile an MLX Function for Optimized Execution
- 
          mlx_disable_compile()mlx_enable_compile()
- Control Global Compilation Behavior
- 
          mlx_zeros()
- Create arrays of zeros on MLX devices
- 
          mlx_ones()
- Create arrays of ones on MLX devices
- 
          mlx_zeros_like()
- Zeros shaped like an existing mlx array
- 
          mlx_ones_like()
- Ones shaped like an existing mlx array
- 
          mlx_full()
- Fill an mlx array with a constant value
- 
          mlx_eye()
- Identity-like matrices on MLX devices
- 
          mlx_identity()
- Identity matrices on MLX devices
- 
          mlx_arange()
- Numerical ranges on MLX devices
- 
          mlx_linspace()
- Evenly spaced ranges on MLX devices
- 
          mlx_rand_bernoulli()
- Sample Bernoulli random variables on mlx arrays
- 
          mlx_rand_categorical()
- Sample from a categorical distribution on mlx arrays
- 
          mlx_rand_gumbel()
- Sample from the Gumbel distribution on mlx arrays
- 
          mlx_rand_laplace()
- Sample from the Laplace distribution on mlx arrays
- 
          mlx_rand_multivariate_normal()
- Sample from a multivariate normal distribution on mlx arrays
- 
          mlx_rand_normal()
- Sample from a normal distribution on mlx arrays
- 
          mlx_rand_permutation()
- Generate random permutations on mlx arrays
- 
          mlx_rand_randint()
- Sample random integers on mlx arrays
- 
          mlx_rand_truncated_normal()
- Sample from a truncated normal distribution on mlx arrays
- 
          mlx_rand_uniform()
- Sample from a uniform distribution on mlx arrays
- 
          mlx_key()mlx_key_split()
- Construct MLX random number generator keys
- 
          mlx_key_bits()
- Generate raw random bits on MLX arrays
- 
          mlx_reshape()
- Reshape an mlx array
- 
          mlx_stack()
- Stack mlx arrays along a new axis
- 
          mlx_squeeze()
- Remove singleton dimensions
- 
          mlx_expand_dims()
- Insert singleton dimensions
- 
          mlx_repeat()
- Repeat array elements
- 
          mlx_tile()
- Tile an array
- 
          mlx_pad()mlx_split()
- Pad or split mlx arrays
- 
          mlx_roll()
- Roll array elements
- 
          mlx_moveaxis()aperm(<mlx>)
- Reorder mlx array axes
- 
          mlx_contiguous()
- Ensure contiguous memory layout
- 
          mlx_flatten()
- Flatten axes of an mlx array
- 
          mlx_swapaxes()
- Swap two axes of an mlx array
- 
          mlx_unflatten()
- Unflatten an axis into multiple axes
- 
          mlx_meshgrid()
- Construct coordinate arrays from input vectors
- 
          mlx_broadcast_to()
- Broadcast an array to a new shape
- 
          mlx_broadcast_arrays()
- Broadcast multiple arrays to a shared shape
- 
          mlx_where()
- Elementwise conditional selection
- 
          mlx_tri()mlx_tril()mlx_triu()
- Triangular helpers for MLX arrays
- 
          mlx_slice_update()
- Update a slice of an mlx array
- 
          mlx_gather()
- Gather elements from an mlx array
- 
          abind()
- Bind mlx arrays along an axis
- 
          rbind(<mlx>)
- Row-bind mlx arrays
- 
          cbind(<mlx>)
- Column-bind mlx arrays
- 
          mlx_sort()mlx_argsort()
- Sort and argsort for mlx arrays
- 
          mlx_topk()mlx_partition()mlx_argpartition()
- Top-k selection and partitioning on mlx arrays
- 
          mlx_argmax()mlx_argmin()
- Argmax and argmin on mlx arrays
- 
          Math(<mlx>)
- Math operations for MLX arrays
- 
          Ops(<mlx>)
- Arithmetic and comparison operators for MLX arrays
- 
          mlx_sum()mlx_prod()mlx_all()mlx_any()mlx_mean()mlx_var()mlx_std()
- Reduce mlx arrays
- 
          mean(<mlx>)
- Mean of MLX array elements
- 
          mlx_cumsum()mlx_cumprod()
- Cumulative sum and product
- 
          mlx_clip()
- Clip mlx array values into a range
- 
          mlx_maximum()
- Elementwise maximum of two mlx arrays
- 
          mlx_minimum()
- Elementwise minimum of two mlx arrays
- 
          mlx_hadamard_transform()
- Hadamard transform for MLX arrays
- 
          mlx_softmax()
- Softmax for mlx arrays
- 
          mlx_logsumexp()
- Log-sum-exp reduction for mlx arrays
- 
          mlx_logcumsumexp()
- Log cumulative sum exponential for mlx arrays
- 
          mlx_isnan()mlx_isinf()mlx_isfinite()
- Elementwise NaN and infinity predicates
- 
          mlx_isposinf()mlx_isneginf()
- Detect signed infinities in mlx arrays
- 
          mlx_nan_to_num()
- Replace NaN and infinite values with finite numbers
- 
          mlx_real()mlx_imag()mlx_conjugate()
- Complex-valued helpers for mlx arrays
- 
          mlx_degrees()mlx_radians()
- Convert between radians and degrees
- 
          mlx_isclose()
- Element-wise approximate equality
- 
          mlx_allclose()
- Test if all elements of two arrays are close
- 
          all.equal(<mlx>)
- Test if two MLX arrays are (nearly) equal
- 
          colSums()
- Column sums for mlx arrays
- 
          rowSums()
- Row sums for mlx arrays
- 
          colMeans()
- Column means for mlx arrays
- 
          rowMeans()
- Row means for mlx arrays
- 
          fft()
- Fast Fourier Transform
- 
          mlx_fft()mlx_fft2()mlx_fftn()
- Fast Fourier transforms for MLX arrays
- 
          `%*%`(<mlx>)
- Matrix multiplication for MLX arrays
- 
          mlx_addmm()
- Fused matrix multiply and add for MLX arrays
- 
          crossprod(<mlx>)
- Cross product
- 
          tcrossprod(<mlx>)
- Transposed cross product
- 
          outer()
- Outer product of two vectors
- 
          diag()
- Diagonal matrix extraction and construction
- 
          chol(<mlx>)
- Cholesky decomposition for mlx arrays
- 
          chol2inv()
- Inverse from Cholesky decomposition
- 
          kronecker()kronecker.default()
- Kronecker product dispatcher
- 
          qr(<mlx>)
- QR decomposition for mlx arrays
- 
          svd()
- Singular value decomposition
- 
          svd(<mlx>)
- Singular value decomposition for mlx arrays
- 
          solve(<mlx>)
- Solve a system of linear equations
- 
          pinv()
- Moore-Penrose pseudoinverse for MLX arrays
- 
          mlx_kron()
- Kronecker product for mlx arrays
- 
          mlx_inv()
- Compute matrix inverse
- 
          mlx_tri_inv()
- Compute triangular matrix inverse
- 
          mlx_cholesky_inv()
- Compute matrix inverse via Cholesky decomposition
- 
          mlx_lu()
- LU factorization
- 
          mlx_norm()
- Matrix and vector norms for mlx arrays
- 
          mlx_solve_triangular()
- Solve triangular systems with mlx arrays
- 
          mlx_trace()
- Matrix trace for mlx arrays
- 
          diag(<mlx>)mlx_diagonal()
- Extract diagonal or construct diagonal matrix for mlx arrays
- 
          mlx_eig()
- Eigen decomposition for mlx arrays
- 
          mlx_eigh()
- Eigen decomposition of Hermitian mlx arrays
- 
          mlx_eigvals()
- Eigenvalues of mlx arrays
- 
          mlx_eigvalsh()
- Eigenvalues of Hermitian mlx arrays
- 
          mlx_cross()
- Vector cross product with mlx arrays
- 
          mlx_save()
- Save an MLX array to disk
- 
          mlx_load()
- Load an MLX array from disk
- 
          mlx_save_safetensors()
- Save MLX arrays to the safetensors format
- 
          mlx_load_safetensors()
- Load MLX arrays from the safetensors format
- 
          mlx_save_gguf()
- Save MLX arrays to the GGUF format
- 
          mlx_load_gguf()
- Load MLX tensors from the GGUF format
- 
          mlx_linear()
- Create a learnable linear transformation
- 
          mlx_sequential()
- Compose modules sequentially
- 
          mlx_set_training()
- Toggle training mode for MLX modules
- 
          mlx_embedding()
- Embedding layer
- 
          mlx_conv1d()
- 1D Convolution
- 
          mlx_conv2d()
- 2D Convolution
- 
          mlx_conv3d()
- 3D Convolution
- 
          mlx_conv_transpose1d()
- 1D Transposed Convolution
- 
          mlx_conv_transpose2d()
- 2D Transposed Convolution
- 
          mlx_conv_transpose3d()
- 3D Transposed Convolution
- 
          mlx_quantize()
- Quantize a Matrix
- 
          mlx_dequantize()
- Dequantize a Matrix
- 
          mlx_quantized_matmul()
- Quantized Matrix Multiplication
- 
          mlx_gather_qmm()
- Gather-based Quantized Matrix Multiplication
- 
          mlx_relu()
- Rectified linear activation module
- 
          mlx_gelu()
- GELU activation
- 
          mlx_sigmoid()
- Sigmoid activation
- 
          mlx_tanh()
- Tanh activation
- 
          mlx_silu()
- SiLU (Swish) activation
- 
          mlx_leaky_relu()
- Leaky ReLU activation
- 
          mlx_softmax_layer()
- Softmax activation
- 
          mlx_dropout()
- Dropout layer
- 
          mlx_layer_norm()
- Layer normalization
- 
          mlx_batch_norm()
- Batch normalization
- 
          mlx_mse_loss()
- Mean squared error loss
- 
          mlx_l1_loss()
- L1 loss (Mean Absolute Error)
- 
          mlx_binary_cross_entropy()
- Binary cross-entropy loss
- 
          mlx_cross_entropy()
- Cross-entropy loss
- 
          mlx_parameters()
- Collect parameters from modules
- 
          mlx_param_values()
- Retrieve parameter arrays
- 
          mlx_param_set_values()
- Assign arrays back to parameters
- 
          mlx_optimizer_sgd()
- Stochastic gradient descent optimizer
- 
          mlx_train_step()
- Single training step helper